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1 Introduction

Many techniques have been considered previously for target discrimination and
tracking: Kalman-filter techniques, model-based schemes, neural network ap-
proaches, classical pattern matching and matched filter methods, dyadic wavelet
and subband methods, and so on. All have had limited success in terms of
achieving fully reliable automated discrimination. When targets and objects
are in motion in an ideal noise-free environment, many techniques will work
well. However, under more realistic conditions, these algorithms encounter dif-
ficulties. Tracking an object when many other objects are present in the field
can be challenging. This situation can occur when a ballistic missile has frag-
mented, The target, which in this case is the warhead, could be surrounded by
tens or hundreds of fragments of similar size. Further complicating the problem
are object trajectories that cross and thus introduce periods of occlusion. This
can cause tracking algorithms to derail. In addition, the image environment
in which these algorithms must work is often noisy. Image acquired from an
on-board optical camera located in an interceptor seeker head is typically noisy.
Noise has been the “kiss of death” for conventional motion models that have
been developed in the context of video coding and motion analysis, such as block
matching, optical flow, and pel-recursive algorithms. Finally, useful algorithms
must be able to cope with rapidly changing motion and short response-time
constraints.

This project is aimed at developing new algorithms for tracking missiles and
warheads. The initial theoretical foundation for this effort is multiresolution
analysis, in particular, continuous multidimensional wavelet theory. In concert
with this framework, we are aggressively developing new classes of motion-model
techniques for target tracking, in support of this project.

Thus far, we have pursued several unique approaches.

First we have developed the theory for an algorithm based on the spatio-
temporal wavelet transform using Galilean wavelets. This work is de-
scribed in detail in the paper “Spatio-Temporal Wavelet Transforms for
Motion Tracking.” It will appear in the Proceedings of ICASSP97 in May,
and is included in Appendix A.

Second we have develped a paralle! spatio-temporal wavelet approach that uses
kinematical wavelets. The transform coefficients are different in this case,
resulting in a different complexity/performance tradeoff. Details of this
approach are given in the paper “Spatio-Temporal Continuous Wavelets
Applied to Missile Warhead Detection and Tracking.” This paper will be
presented at the SPIE VCIP Conference in February. A copy is included
in Appendix B.

Third we have developed a new affine-motion model for estimating motion
and used it to develop a model-based method for noise suppression to
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facilitate target tracking. Thus far, this algorithm seems to work very
well under a broad set of conditions. It is described in the paper “Sensor
Data Enhancement of Ballistic Missile Warheads Using an Affine Motion
Model.” A copy of this paper is included in Appendix C.

Fourth we are combining some of the advances we made with the noise sup-

pression algorithm (appendix C) with the wavelet tracking approach. A
discussion of this work in progress is given in Appendix D.

Fifth we have examined a new approach to motion estimation which employs

the explicit use of linear prediction. The linear prediction algorithm was
developed in a Ph.D. thesis by Robbie Armitano. A discussion of the
experimental evaluation is given in Appendix E. The technique works well
under mild noise conditions. It has significant advantages over block-
based approaches in this regard. However, under the moderate and severe
noise conditions we used in our test sequences, the algorithm was not
successfull in tracking the motion. Nonetheless, we found this investigation
interesting. It could be very useful for sensors with mild noise because it
works under these conditions and the complexity is comparable to that of
conventional block matching algorithms.

Sixth we examined a simple approach at the beginning of the year, which

involved using simple filtering and a Fourier feature representation. This
work, although small in scope, gives us some insight into the performance
complexity tradeoff, It is very simple from a complexity perspective, yet
its results are reasonable. We are presently doing some modifications and
comparisons. A discussion of this effort will be given in the final project
report, after comparative testing has been completed.
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SPATIO-TEMPORAL WAVELET TRANSFORMS FOR MOTION TRACKING. ~

Jean-Pierre Leduc  Fernando Mujica Romain Murenzi  Mark Smith
Georgia Institute of Technology
Center of Signal and Image Processing
Clark Atlanta University
Center for Theoretical Studies of Physical Systems
Atlanta, Georgia

ABSTRACT

This paper addresses the problem of detecting and tracking
moving objects in digital image sequences. The main goal
is to detect and select mobile objects in a scene, construct
the trajectories, and eventually reconstruct the target ob-
jects or their signatures. It is assumed that the image se-
quences are acquired from imaging sensors. The method
is based on spatio-temporal continuous wavelet transforms,
discretized for digital signal analysis. It turns out that the
wavelet transform can be used efficiently in a Kalman fil-
tering framework to perform detection and tracking. Sev-
eral families of wavelets are considered for motion analysis
according to the specific spatio-temporal transformation.
Their construction is based on mechanical parameters de-
scribing uniform motion, translation, rotation, acceleration,
and deformation. The main idea is that each kind of motion
generates a specific signal transformation, which is analyzed
by a suitable family of continuous wavelets. The analysis
is therefore associated with a set of operators that describe
the signal transformations at hand. These operators are
then associated with a set of selectivity criteria. This leads
to a set of filters that are tuned to the moving objects of
interest.

1. INTRODUCTION

The primary purpose of the present work is to investigate
families of spatio-temporal continuous wavelet transforms
(CWT), and to investigate their utility for motion tracking
and trajectory constructions. The approach considered in
this paper differs fundamentally from other techniques that
have been proposed such as those based on optical flow,
pel-recursive, block matching and Bayesian models. The
main novelty of this method is it combines the CWT with
Kalman filtering for tracking. Several families of CWTs can
efficiently perform various tasks like motion-based detection
and segmentatian, selective tracking and reconstruction of
objects in motion. The CWT is also highly robust against
sensor noise. Moreover, it is able to handle temporary oc-
clusions resulting from crossing trajectories. These proper-
ties are generally not found in techniques rooted in optical
flow and block-based motion estimation.

The study of CWTs originally evolved from considering
spatio-temporal affine transformations. These were easily
amenable to Lie group structures and admissible wavelet
representations. The approach turned out to be efficient

* This material is based upon work supported in part by sup-
ported partly by the U.S. Army Research Office under grants
DAAH-04-96-1-0161 and DAAH-04-95-1-0650, and in part by a
Belgian NATO fellowship.

for signal analysis and enabled the introduction of numer-
ous physical parameters as criteria of selectivity. The im-
portance of CWTs in this field was recognized several years
ago [1). Although the analysis of image sequences requires
numerous analyzing parameters, only a small subset of them
has to be considered simultaneously in each specific appli-
cation. The most significant components of uniform motion
are studied in this paper, i.e. the translation, the rotation,
the deformation, and the acceleration. The spatial orien-
tation (the preferential axis of inertia) and the scale arc
additional parameters of concern; indeed, the scale is in-
trinsic to any wavelet analysis. The application of motion
tracking is addressed in this paper and is illustrated with
CWTs tuned to the velocity, i.e. the translational motion.
It is assumed that local motion is linear. Hence, the tech-
nique applies whenever the approximation is valid locally
on a few frames (3 or more). CWTs that are tuned to ve-
locities are called Galilean wavelets to refer to the Galilei
group that describes classical mechanics.

2. BUILDING FAMILIES OF CWTS

The construction of CWTs relies on signal transformations
that model motion and object deformations. They can take
into account translation, rotation, scale and shear. One idea
developed ip this work, consists of expressing all these ele-
mentary transformations as unitary operators in the spatio-
temporal domain 2D + T (2D spatial plus time), and to
write useful generalizations for uniform motion (i.e. motion
described by time-invariant parameters), namely transla-
tion, rolation, deformation, and acceleration. These umni-
tary operators and their related parameters are eventually
combined to form a general law of signal transformation.
This transformation is intended to be applied either to the
signal or to the mother wavelets. When applied to the
signal, it describes the transformations performed by the
motion i.e. warpings of the signal. When applied to an
admissible mother wavelet, it generates a whole family of
continuous spatio-temporal wavelets (band pass filters for
signal analysis). The construction of these families is ruled
by locally compact groups (Lie groups) and the admissi-
bility of a mother wavelet is enforced by three representa-
tion properties: square-integrability, irreducibility and uni-
tarity. The procedure to calculate admissible wavelets is
well-known and relates to that of the coherent states orig-
inating from theoretical physics. As such, it has already
been developed in other research work in the one and multi-
dimensional cases [2). The construction proceeds as follows.
Unitary spatio-temporal transformations are first defined
on the space (R? x R). Typically, in this construction, the
structure of the parameters leads to composition relation-
ships, inverse and identity that characterize a group. The




study of group representations in spatio-temporal Hilbert
spaces comes thereafter. According to the theory of co-
herent states, the demonstration of unitarity, irreducibil-
ity and square-integrability of these representations guaran-
tees the existence of admissible continuous spatio-temporal
wavelets. Practically, this means that operating the mother
wavelet in the space of the parameter definition covers the
whole set of bandpass filters of finite energy, while preserv-
ing all the well-known wavelet properties (isometry, inver-
sion, reproducing kernel, and resolution of the identity). In
this section, five different constructions of CWT families
will be considered as examples. They originate from the
groups covering all the motions (3] and represent the action
of Lie algebras and groups on_manifolds. First, operators
on wavelet and signal {0 : L*(R? x R)} — L*(R? x R)}
will be defined with their respective set of parameters.

The affine-Galilei group supports the construction of
CWTs tuned to velocity and uniform trenslational motions.
The set of operators and parameters involved in this CWT
are the spatio-temporal translation of parameter band Tto
represent the space and time locations, the velocity ¥, the
dilation a to represent the scale, and the spatial rotation
6 to represent the orientation (the preferential anisotropy).
The action of these parameters can be written as the fol-
lowing spatio-temporal transformation

£ = %R(—G)(f, —b-dt); ta=ti-r, (1)

where R(6) is the rotation matrix in SO(2). Let us write
the wavelet transform, ¥(Z,t), in the Galilean family. In
the spatio-temporal domain, we have

Q(b, 7.7,0,0)¥] (£,1)
[= Ly (L R(-6) (£~b-5t) , t-7], (2)

and in the Fourier domain, where k and w stand for spatial
and temporal frequencies, we have

[ﬁ(g,r, U‘a,G){fl] (E,u)

iy - . . 3)
= get (Ri+wr) g [R(—-9) ek, w+kf;'] .

The set of parameters considered in this family of CWTs is

(b,7,7,a,6). These CWTs are called Galilean wavelets.

A slightly different approach to Galilean wavelets, called
the kinematical wavelets, has been described by Duval-
Destin and Murenzi {1). In this case, the set of parameters
is (b, 7,a,¢,68) where a is the spatio-temporal dilation, and
¢ is the speed parameter. c and § reach the velocity. The
spatio-temporal transformation is given

2/3

L ROE- b= (h-n) (@)

ct/3a

Ty =

Let us now consider uniform rotational motion as a third
spatio-temporal transformation, and generate a family of
CWTs. Uniform rotational motion is different from the
spatial rotation of the SO(2) group in the sense that it in-
corporates time and space. The resulting velocity is given

in this case by

O(t) = o + & AZ(2) , (5)
where & is the angular velocity, U is the translational veloc-
ity and Z(t) the current coordinate location of the moving

object. The symbol A stands for the cross vector product.
Another way of expressing this signal transformation in the
image planes is given as

£2 = R(-61)T); ta=t ~T, (6)

ft ~—sinfi
where [R(&t) = ( g?jet ngnet )] The set of pa-
rameters considered in this CWT family is (b,7.a, 7. )
or (gi T|a|60y0)‘ ’

Uniform temporal dilation (i.e. expansion or contrac-

tion) 1s defined by substituting in Equation (6) R(t) by
-at

[D(at) = ( ¢ 0 e_oo, )] This transformation is im-

portant since any object in motion approaching the camera
undergoes rather exponential expansions in the image field.
The set of parameters of interest for the CWT construction
are then (b, 7, 0,7, ).

A fifth set of analyzing parameters would consider uni.
form acceleration ¥, given by the second order coefficient

when expanding the trajectory curve £ = f(t) in series
1 = 1
-'i = E -'t iz 2 -_n in+’.‘ -
i) = b+ ot 4 570t +Zl(n+2)!7 M
n=

where 7y = 5%-‘”5__.0 is the velocity, and o = %{.‘,’-’h:o is
the acceleration. The 5. stands for n'"-order acceleration
and is not considered in this study. Thus, the parameters

of interest in this CWT family will be (&, 7, a, Do, 50).
3. DEFINITION OF THE CWT

This section presents the definition of one CWT family, the
Galilean wavelets. The signal s(Z,!) subject to analysis is
defined in the Hilbert space L*(R? x R, d?#dt). The CWT

W[s;g, 7,,8,8) is defined as an inner product

W[J',g, 7.7,a,6)

]

-1/2
co ' <¥,500l5>

]

e;'? / 4% dt Vg oo S(E,1)
RIxR

where the overbar ~ stands for the complex conjugate. The
wavelet, ¥, is a mother wavelel. It must satisfy the condi-
tion of admissibility (i.e. of square-integrability) meaning
that there exits a constant cy such that

Ik 2
cv = (27)° / d’kww <
RIxR fk}?
A numerically efficient way of performing the CWT consists

of working in the spectral domain by means of the (2D+T)
FFT. The other CWT families have a similar definition.

4. EULER-LAGRANGE EQUATION

Let us consider Lagrange's principle of the least action that
can be equivalently derived in classical mechanics and in
optimal control from the calculus of variations. The system
is characterized by the action S and a non-negative defi-
pite function, called the Lagrange function, L{Z(t), z(t);t],
where £(t) is the trajectory and Z(t) = %l is the corre-
sponding velocity function. The calculus of variations al-
lows us to derive the motion equation and the trajectory




that optimize the action. Usually, motion between times t)
and ¢; in a conservative mechanical system coincide with
the extremal of the functional

3]
S = / LIE(t), £(t); t)dt (8)
t

where L is the difference between the kinetic and the po-
tential energy. Optimal control exploits the same modeling,
where S is a cost function to be optimized under some con-
straints to be specified. The trajectory is then uniquely
defined when the initial conditions are known in terms of
object location and velocity (detection issue). At the ex-
tremum, denoted by », the calculus derives the well-known
Euler-Lagrange equation

S - = 0. (9)

In this paper, the Lagrange function L to be considered is
the square of the modulus of the Galilean CWT, ie. the

energy density | < ¥ o s> |2 5=% 7 =1 and
# = £(t). The Cauchy-Schwarz inequality states that

| fra, g 4k dw ¥ [E,w] § (kW)

S Jraxr @0k dw | [k, w] |2 Jraun 4k dw |3 (kw)?,

(10)
where §(£,t) is a band-limited version of s(Z,t) with one
or several moments equal to zero. Then, equality proceeds
if W(k,w) = c3(Kw). This inequality provides some
starting conditions for the wavelet transform to perform
matched filtering or correlation. The analyzing wavelet has
to be matched to the object with respect to its spectrum
and its motion. In our case, the unique optimum to be
tuned must correspond to the trajectory. This enables a
stable and unambiguous tracking procedure. This impor-
tant property must then be analytically demonstrated for
each family of wavelets when applied to the particular mo-
tion under investigation. This equation and all its related
theory remain valid in our case and interconnect our analy-
sis problem not only to the theory developed for mechanical
systems but also to optimum control. The equations and
the algorithms that have been developed to recursively con-
struct the optimum control, apply readily to this problem.
Let us mention the Kalman filter and Bellman's algorithm
(Viterbi algorithm).

5. DETECTION AND TRACKING

The detection of moving objects relies on extracting local
maxima in the velodity representation, E = f{7,a)

k]

=T E:Sm.,. -
E(7,a) =/ / | < ¥, 06ls > drd® (11)
r=0 E:Em;n
i.e. from the energy density computed by integrating the
energy of the CWT over the space and the length of the
scepe. This technique effectively characterizes all the mov-
ing objects and the velocities.

The tracking strategy is based on combining Kalman fil-
ters and CWTs. The state of the Kalman filter is composed
of all the wavelet parameters. Usually, Kalman filters are

characterized by two equations, a state equation and an ob-
servation equation. The state equation is an adaptive pre-
dictor that updates the state U(n) of the filter

Uin) = &(n,n-1)U(n-1) + Wi(n), (12

where U(n) is the state prediction at step n and W'(n) the
prediction error. & is the transition matrix or the feed-
back matrix of the Kalman filter. If the state is well-chosen
(i.e. the CWT matches the signal), the predictor behaves
as a Markov process, and the prediction error is a zero-
mean Gaussian process. In the case of an analysis with
Galilean _wavelets, the state parameters are composed of
the set (b, 7,7, 4,6) and the prediction step n is the image
interval. For other CWTs (like the accelerated family), the
prediction step can involve several images, typically tens of
them. The CWT is then used at each step n as a motion
analyzer to determine the exact state values of the Kalman
filter U(n). A gradient algorithm works in the neighborhood
of the predicted state U(n) to locate the exact state U(n)
composed of the parameters that maximize the following
energy density

MAX E(br,0,6) = | <% ;. ,ls>F. (13)
The observation equation also exploits the CWT as a
motion-based extraction tool tuned to the current exact
state parameters. The CWT captures and isolates the se-
lected objects from the scene s to provide a display J,

I(nibt) = < qls.r.ﬂ=ﬂ,,,,,n=a.,,.l.0¢,.yIs > 4 Vinb, 7).

14)
I is the segmented image of the selected object, displaved
alone at its correct location; s is the original signal under
analysis, and V' is the noise produced by the optical sensors.

6. MORLET WAVELET AND APPLICATIONS

The applications presented in this paper for detection and
tracking has been performed with the Galilean CWT, An
anisotropic Morlet wavelet is admissible as a mother wavelet
in the Galilean family; it defines a non-separable filter

8(z,1)
= ekoX =f<X x> _ g~ ¥<ko | DEo> ,—}<XiCK>

where X = (£¢)T € R" xR, C is a positive def-
inite matrix and, D = C-!. For 2D + T signals,
/e 0 0
C= 0 1/ 0
0 0 /e
duce anisotropy in the wavelet shape. Figures 1 and 2 show
the energy density of the Morlet wavelet in the Fourier do-
main at velocity 7 = (1,0). A high selectivity or anisotropy
¢t = 1000 has been applied to flatten the wavelet along the
velocity plane. Figure 4 presents the issue of the motion de-
tection applied to the synthetic scene displayed in Figure 3.

Figures 5 and 6 present the tracking of one accelerated ob-
ject captured out of five others.

where the ¢ factors intro-

7. CONCLUSIONS

Several families of spatio-temporal CWTs have been pro-
posed in this paper as tools to analyze spatio-temporal sig-
nals with respect to mechanical criteria. Among them, the




Galilean wovelet transform is tuned to velocities and uni-
form translation motion. We have shown how that CWT
family can handle detection and tracking applications. We
believe, at this point, that the approaches based on CWTs
have promise in the area of motion tracking. Tracking has
also been shown possible even under severe noise conditions,
and even when occlusions occur.
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Figure 2. Galilean wavelet in velocity plane (1,0).
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Figure 3. synthetic noisy image sequence.
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Figure 4. Velocity detection in the noisy sequence:
U= (vz,vy) = (0,.5), (0,1) (0.2), (1,0).
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Figure 5. Selective trajectory construction (remark: the upper
bound image is located at z = 64).
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Spatio-temporal continuous wavelets applied to missile warhead
detection and tracking

F. Mujica*, J.-P. Leduc”, and M. J. T. Smith

Center for Signal and Image Processing
School of Electrical Engineering, Georgia Institute of Technology

R. Murenzi

Center for Theoretical Studies of Physical Systems*
Department of Physics, Clark Atlanta University

ABSTRACT

This paper addresses the problem of tracking a ballistic missile warhead. In this scenario, the ballistic missile is
assumed to be fragmented into many pieces. The goal of the algorithm presented here is to track the warhead that
is among the fragments. It is assumed that images are acquired from an optical sensor located in the interceptor
nose cone. This imagery is used by the algorithm to steer the course of interception.

The algorithm proposed in this paper is based on continuous spatio-temporal wavelet transforms (CWTs).
Two different energy densities of the CWT are used to perform velocity detection and filtering. Additional post-
processing is applied to discriminate among objects traveling at similar velocities, Particular attention is given
to achieving robust performance on noisy sensor data and under conditions of temporary occlusions.

First we introduce the spatio-temporal CWT and stress the relationships with classical orientation filters.
Then we describe the CWT-based algorithm for target tracking, and present results on synthetically generated
sequences.

Keywords: Motion estimation; Target detection and tracking; Continuous wavelet transform

1 INTRODUCTION

One of the more difficult problems related to target tracking is the interception of ballistic missiles. In this
scenario, an optical image sensor is located in the nose cone of an interceptor. The images acquired are processed
on-board and the course of interception is determined. Several factors complicate the problem. First, the images
received are noisy, often making it difficult to isolate the object of interest. Second, ballistic missiles often
fragment, resulting in a cloud of many objects traveling on similar trajectories. Among this debris is the target
of interest, which is the warhead. Third, it is possible that the trajectories of missile fragments may cross during




the course of their travel. Thus for a brief period of time, the warhead may be occluded by debris. Finally, both
the missile and the interceptor are traveling at high speeds. Hence, very little processing delay can be tolerated,
since decisions regarding course changes must be made early for a successful interception to occur.

The specific problem we address in this paper is developing an algorithm capable of tracking a target in this
noisy environment. It is assumed that the true target location has been passed to the interceptor by a ground
station. The algorithm we propose to estimate object trajectories is based on spatio-temporal continuous wavelet
transforms (CWTs), and attempts to exploit the multidimensional nature of the representation. The CWT has
the attractive property that it is parameterized according to physically meaningful parameters, namely, location
7, time t, scale a, velocity magnitude ¢, and orientation 8. Multiple feature spaces can be derived by integrating
over a subset of the parameters. The structure of the CWT provides a natural way to approach the tracking
problem, and has resulted in our developing a three-stage algorithm.

One feature space extracts the velocities embedded in the image sequence. This is called the velocity detection
stage. In the next stage, a second representation is used to retain those objects moving at a prespecified velocity
and to reject background noise and other objects moving at different velocities. Finally, post-processing is
performed in order to resolve multiple objects moving at the same velocity.

This problem is largely one of motion estimation and analysis. The most popular techniques of this type are
based on block matching and optical flow schemes. Block matching techniques model motion in terms of a coarse
block-translation representation, while optical flow methods rely on gradient approximations. These techniques,
in general, are highly sensitive to noise (2, 4, 3], and cannot handle occlusions in a natural way.

More appropriate for this application is a filter/transform-based approach that exploits the directional orien-
tation characteristic of the motion in both wave-number!/frequency and the spatio-temporal variables. Clever
selection and use of directional filters can effectively isolate specific object motion. This approach is more robust
to noise and can naturally handle temporary occlusions resulting from crossing trajectories.

Methods using Gabor filters and projection filters have already been considered as techniques to capture the
directional characteristic of the motion. However, they generally do not provide sufficient velocity resolution
for this application [2]. The spatio-temporal CWT, however, can be effective in this regard. We have obtained
excellent velocity estimates from the CWT and achieved rejection of background noise as part of the process.
Additionally, the spatio-temporal domain of the CWT allows the interpolation of “missing” information when
occlusions occur.

In the following sections, we introduce the spatio-temporal CWT and discuss the relationships with classical
orientation filters. A description of the CWT-based algorithm for target tracking is presented next, and supported
by experimental results on synthetic data.

2 MOTION ESTIMATION

Motion estimation is a difficult task, especially when noisy imagery and complex motion are considered.
Classical algorithms for motion estimation are intrinsically based on approximations of a local gradient, which is
typically calculated from a pair of image frames. As such, these techniques are highly sensitive to noise (2, 4, 3}.
Another limitation of these techniques is their inability to handle occlusions.

To overcome this problem, a filter/transform-based approach is usually taken. Here the image sequence is
considered as the input signal, to take full advantage of time correlations. Among these algorithms are Gabor and
projection filtering techniques. Unfortunately, these filters have relatively poor velocity resolution {2, 4], thus,

!'Wave-number in this context refers to the spatial frequencies.




they are not appropriate for the application at hand.

The idea underlying our approach is to process at once as many frames as permitted by memory and process-
ing time restrictions. By expanding the temporal region of support of the filters, we improve robustness against
noise and enable complex motion to be handled easily. In addition, “missing” information produced by crossing
trajectories can be interpolated, resulting in improved behavior against occlusions. This approach has the draw-
back of increasing the temporal delay of the overall system, which is of primary importance in the scenario of
interest. This implies a tradeoff between accuracy of the estimation and temporal delay. In this paper, we focus
on the motion-estimation accuracy.

2.1 DEFINITIONS

The Hilbert space of interest, #, corresponds to the space of square integrable signals over time and space,
that is, L(IR? x IR, d?% dt). The corresponding norm is:

el = [ [ 1 opez e, "

To distinguish the dimensions, we use the term (24+1)D to signify two spatial dimensions plus time. The Fourier

transform of a (2+1)D signal, s(£,t), is denoted by é(E,w), where k and w are the wave-number and temporal
frequency respectively. :

2.2 MOTION TRANSFORMATIONS ON THE FOURIER SPACE

To understand how motion affects the wave-number/frequency domain consider a steady signal

s(Z,t) = (%) . (2)

The Fourier transform can be expressed as
§(k,w) = §(R)s(w) . (3)

The energy is concentrated in the plane defined by w = 0. Now, consider a moving version (with velocity ¢) of
the same signal,
8(5—-17t,t) ) (4)
and its Fourier transform, B }
§lkyw+ k7). (5)

The energy of the signal is now concentrated in a plane defined by w = —k - 7 (i.e. a plane perpendicular to the
vector 7). Such a plane is called the velocity plane associated with the velocity vector #. The inclination of the
resulting velocity plane with respect to the horizontal plane (wave-number plane, k; — k;) depends only on the
magnitude of the velocity, 5], while the inclination with respect to the k, — w plane (or k, — w plane) depends
on the orientation of the velocity vector, & = tan™!(v,/v;). Figure 1 shows the effect of constant motion on a
synthetic signal (Figure la) in the wave-number /frequency domain. Three velocity magnitudes are considered,
[7] = 0,1 and 2 in Figures 1b, ¢ and d respectively.

It is clear that the problem of velocity detection and filtering is a task for orientation selective filtering. The
spatio-temporal CWT can be seen as a tool for designing orientation filters in an elegant way. As it will be shown in
the subsequent sections, the parameters of the wavelet representation are directly related to motion transformation
parameters. These parameters, velocity magnitude and orientation, along with spatial and temporal translations,
and scale, define the basic parameters of the spatio-temporal CWT.
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Figure 1: Horizontally moving signal. (a) Space-time domain representation (time evolution is represented by
intensity variation) ; (b, ¢ and d) DFT domain representation for [v| = 0.5,1.0 and 2.0 respectively,

3 SPATIO-TEMPORAL CWT

We employ the spatio-temporal CWT in a way that is reminiscent of the operation of the human visual system,
in the sense that high spatial resolution is emphasized for slowly moving ob Jects, and high temporal resolution is
emphasized for rapidly moving objects [5]. As in the 1D case, the (2+1)D CWT performs a transformation with
respect to a set of basis functions that are derived from a particular signal, called the mother wavelet, by means
of function transformations. In the next section, the transformations applied to the mother wavelet, v, both in
the original and in the transformed domain, are briefly described.

3.1 TRANSFORMATIONS APPLIED TO THE WAVELET

Let_us assume the region of support of the mother wavelet is concentrated in a velocity plane defined by
w = —k - 4,. The condition that the signal 1 must satisfy to be considered a mother wavelet, and the definition
of the one used in this work will be described in a subsequent section.

The function transformation used to derive the set of bases for the (2 + 1)D CWT are as follows (5, 7).

¢ Spatial and temporal translation: The wavelet is shifted to a given point in space-time. This transformation




is denoted by T5:7) and is defined by

(F - b,t - T) (6)
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* Rotation: This transformation, denoted as R?, rotates the wavelet on the spatial coordinates around the
frequency axis. In this way the filters can be tuned to a particular orientation associated with that velocity,
This transformation is defined by

[R%y)(£,1) = w(r®Z1), (8)
[R%9] (Fw) = $0~Fw), 9)
_ cos(f)  sin(6)
= [—sin(@) cos(d) | - {10

o Scaling: This transformation, denoted by D¢, is standard in the wavelet framework and is defined by

e = - ~3/2 _1-_:‘ E_
(D] (Z,1) e Y(=, =), (11)
[0°9] i) = @¥2d(ak, ). (12)
¢ Speed tuning: This transformation can be seen as two independent scaling operations performed on the

spatial and temporal variates. This allows for the localization of the wavelet around the correct inclination
of the velocity plane. It is denoted by A¢ and defined by

[A%) (2,1)
[A4] (k)

(e Pz, M3y (13)
D( 3k, ) | (14)

Thus, the parameter c is directly associated with the velocity magnitude, |0]. This parameter was introduced
in (5], in order to resolve the tradeoff between high (low) spatial frequency and low (high) temporal frequency
for slow (fast) moving objects.

These operators taken all together transform a particular signal with region of support around location
(a,c,8,b,7) in the parameter space, to a new location (a',c',8',5, 1), provided the mother wavelet has ap-
propriate support. '

3.2 DEFINITION

The spatio-temporal CWT of a (2+1)D signal is a mapping from finite energy signals defined on (R? x R) to
finite energy signals defined on

G:g:(a,c,&,g,'r)e(IR'*'le'*'><[O,27T]XIR2XIR). (15)

Consider the composite transformation defined by the application of all the operators defined in the previous
section,

QW& = [T RADY] (2,1) (16)




= a-3/2¢(—1—r-9(f—5) -C-fﬁ(t-r)) (17)
c!/3a "a '
[%0] (Fw) = (75 R*AD*y] (F, ) (18)
. - 1 e
= p3/2 1/3,.~-6 ~j(k-btwr)
= o’ *Y(ac'3r k,ac2/3w)e J . (19)

For convenience, let us define w(a,c,ﬂ,g,r) (Z,¢) = [9] (£,2) and its equivalent Fourier transform to be, IJ‘(H.C.G,E,T) (k.w) =
[ngﬂ] (E, w). The spatio-temporal CWT of a (2 + 1)D signal, s, with respect to the mother wavelet, 9, is defined
by (3]

1
_\/C——‘b'(w(a.c,a.s,r)ls)

—\;C_E//w(‘a.c,e.s,r)(f’ t)s(fat)dzidt. (20)

The speed parameter, ¢, controls the weighting between spatial and temporal planes. Different orientations are
considered by applying a rotation operator, with parameter 6, on the spatial coordinates ¥, The other parameters,
a, b, and T, represent scale, spatial translation and temporal translation. The condition for the signal ¥ to be
considered as a mother wavelet, is called the admissibility condition, and reads [5)

Sw(a,c,ﬁ,g, T) =

]

Wk 2 v
omtony [ [ BED gy, o
R?JR - [k]?|w|
In the wave-number/frequency domain, (the k/w domain), the spatio-tempora] CWT may be expressed as

- 1. X
S(a,c,8,b,7) = —Ew(a.c.ﬂ.g.r)l's)' (22)

Here 9 is normalized to ¢, = 1, The spatio-temporal CWT satisfies Parseval’s condition of energy conserva-

tion,
/////Is(a,c,e,&r)lzd—f-gfde d?b dr
a c

8117 = 1is1)? . (23)

3

Thus, E = [5(a,c, 8, b, 7)[? is the energy density in the CWT domain.

The energy in the wave-number /frequency domain of a 2D signal moving with constant velocity, 7, is concen-
trated in a velocity plane defined by w = —k . 7, Proper selection of the CWT parameters can achieve velocity
selective filters (i.e. filters with regions of support close to a particular velocity plane). Thus, the CWT represents
a suitable tool for velocity detection and filtering. Nevertheless, selection of mother wavelets remains a key issue,
since usefulness of the representations depends on that choice. The Mother wavelet used in the simulations is
described in the next section.

3.3 MORLET WAVELET

The spatio-temporal extension of the Morlet wavelet is a good candidate for motion estimation applications.
Its region of support can be appropriately located around a particular velocity plane, 7,, typically 7, = (1,0




Moreover an anisotropy parameter, ¢, applied to the spatial variates controls the variance of the wavelet with
respect to the reference velocity plane. The Morlet wavelet is defined, in the spatio-temporal domain, by

W t) = (eFFoZem 127 _ e—%Ifl’e—iliol’)(ejwnle-'%" — i huly (24)

and in the wave-number/frequency domain by,

~ o

D(E,w) = (e~ HIF-Fol” _ g RURPHIE)) (om dlwmwe)® _ g=dlwi+ul)y (25)

Figure 2 shows the transformed Morlet wavelet, ‘/ja,c,e,i,r(E’ w), in the wave-number/frequency domain. The three
filters shown (two views of each) are tuned to the velocities of the objects from Figure 1, that is, for ¢ =0.5,1.0
and 2.0. The other parameters are fix as follow, § = 0,k, = [6,0)',w, = 6 and ¢ = .25. A set of scales.
a = {1,1.25,1.5,1.75,2}, is chosen to cover uniformly a given velocity plane. As it can be seen from Figure 2,

Figure 2. Wave-number/frequency representation of three Morlet wavelet filters with parameters § = 0. k=
6,0)',w, = 6,6 =0.25 and a = {1.0,1.25,1.5,1.75,2.0}. (a) ¢ = 0.5, (b) ¢ = 1.0, (c) ¢ = 2.0.

the region of support of the filters is an ellipsoidal cone concentrated around a particular velocity plane. Thus,
velocity detection and filtering is possible.

3.4 ENERGY DENSITIES

The multidimensional nature of the CWT calls for a reduction of the variates to consider in the visualization
process. This can be done by either fixing a subset of the parameters, or by integrating over a subspace of the
parameter space. The second approach has the nice property that it can result in invariant representations with
respect to some parameters. Thus, partial integration on a subset of the parameters in the energy density results
in different energy representations that can be used to extract relevant features. Among the various possibilities
for energy representations, two are of particular interest for object tracking and detection applications.




» Speed-orientation energy density: Here integration is performed over scale, a, spatial translation. &, and
temporal translation, 7. As a result, we obtain the following energy density,

2dg .
EI(C,9)=/ / /1[< Vosils > Sebar. (26)
R+J/R?/R € a

o Space-time-velocity energy density: In this representation, the speed tuning parameter and the orientation
are fixed (c = ¢;,6 = ;) and integration over the scale parameter, a, is performed. The resulting energy
density is given by,

- 1 2da -
E2(b)T) Ci)ei) = /IR* E t< wa,c;.ﬂ;,s.rls >l -0_4 ‘ (QI)

The impact of these two energy densities on the proposed detection and tracking algorithm is discussed in the
next section.

4 DETECTION AND TRACKING ALGORITHM

At this stage, it is important to mention that a computer implementation of the CWT requires a discretization
of its parameters. Thus, integration in the formulas described in the previous sections should be replaced by

appropriate summations. In this section, we redefine the two energy representations E, and E, of equations (26)
and (27) for the discrete case.

The detection and tracking algorithm relies on the multidimensional nature of the spatio-temporal CW'T (5).

Two different energy density representations are used to estimate motion parameters. The first two stages of the
proposed algorithm are depicted in Figure 3.

: Output J
Energy density Local maxima Energy de'nsxty :
Input = .. velocity extraction i ep ace-txme' '
at fixed velocity Output n

Figure 3: Object Detection and Tracking Algorithm.

The first stage, velocity detection, calculates the energy density in the speed-orientation representation,

Befl= Y —|<¥ 00

4
ajc

2
rds>] (28)

a; vbn T
Here local maxima (c;,6;) correspond to velocities present in the scene. These local maxima are used in the next
stage, velocity filtering, to calculate the energy density in the space-time representation for each pair (¢, 8;),

- ' 1 2
By(Bym i) = 3 oo |< Yy ol > (29)
a; J

The result is a series of image sequences, each containing objects moving at a given velocity. Other local features,
like shape, scale and orientation, can be used to discern between objects moving at the same velocity. This
algorithm provides a means for motion-based detection and tracking in a self contained manner.




5 RESULTS AND CONCLUSIONS

Algorithm development and testing were performed using synthetically generated sequences. In this initial
work, we restrict the analysis to linear motion. Figure 4a shows a 64 x 64 x 64 pixel representation of four moving
objects. The velocities of each of the four objects are specified in the following table:

Object | vz | v, |
1 050
2 110
3 2|0
4 0|1

Figure 4: Four-object test sequence in original domain.

Note that object 4 occludes object 2 around the middle of the sequence. Gaussian noise ? is added to the sequence
to simulate realistic imagery. Frame number 20 of the noisy sequence is shown in Figure 4b.

The result of the velocity detection stage (i.e. energy density in the speed-rotation representation) is shown
in Figure 5a. The local maxima are represented as plus signs in the contour plot. These local maxima are used
in the velocity filtering stage. Frame number 20 of the resulting output sequences are shown in Figure 5c.

As a result, each sequence contains just objects moving at a given velocity, and the background noise has been
reduced. In the post-processing stage, thresholding and local maxima extraction is used to recover the trajectories
of all four objects. Figure 5b shows the trajectories obtained. Note that trajectories are correctly interpolated
when occlusion occurs. It is worth mentioning that even though no explicit motion model is assumed, trajectories
are accurately found.

At this point, we believe the CWT-based method has promise in the area of motion tracking. Velocities were
successfully detected and velocity filtering was demonstrated in a natural way, leading to noise reduction in the
output. Tracking of the object trajectories was shown to be possible even under severe noise conditions, and even
when occlusions were present. Work continues in the CWT development aimed at addressing complex motion.

2The resulting signal has a SNR of 10 dB with respect to the original signal.
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Figure 5: Detection and tracking algorithm results. (a) Velocity detection stage results, E;; (b) Trajectories of
the four objects; (c) Frame number 20 of the filtering stage result, E,.
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APPENDIX

Here the spatio-temporal CWT in the temporal domain, equation (20), is calculated for a moving impulse,
8(Z - 1t) . (3C)

A simplified version of the Morlet wavelet is used, [E.,[ >35and w, > 5 {5). This Morlet wavelet is defined by,
W(E, 1) = e~ 1) gmilRo ftuet) | (31)

After applying all the operators defined by equation (19), we obtain the set of basis functions defined by,
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It can be demonstrated that the CWT of the signal, s, is given by,
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where the functions f; and f, are defined by,
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Consider the spatio-temporal CWT of the moving impulse as a function of its velocity, U, the speed parameter,
¢, and the orientation parameter, 6, that is,

Ss(a,c,8,5,7) . (36)
We expect to obtain a maximum of this expression when,
_ el ;
c = WP=5 (37)
6 = tan1(%) = tan~! (D) (38)
Uz bz,

Figure 6a shows the evaluation of equation (36) for 6 = 0,b = [1,0)', 7 = 1. The Morlet wavelet has parameters
ko = [6,0]' and w, = 6. The maximum is located around ¢ = vz = 1. Indeed an object with horizontal velocity

vy = 1 gets to the point b=[1,0) at r = 1. In Figure 6b, this experiment is repeated for b=1[0,2) and 7 = 1.
In this case, the peak is found around ¢ = vy = 2.

Figure 6: Spatio-temporal CWT of a moving impulse as a function of vz (or v,) and ¢ for fixed .6, b, and 7; (a)
So=pweopla=.1,60=0b= [1,0),7 = 1), (b) Sz=fo,y(@= 1,6, =7/2,6=[0,2),7 =1).
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Sensor data enhancement of ballistic missile warheads using an affine
motion model
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ABSTRACT

Neutralizing the threat of an incoming ballistic missile is a difficult task. Often the missile disintegrates,
leaving the warhead surrounded by a number of ballistic fragments. Among these fragments only the warhead
must be intercepted. Thus the challenge is for the interceptor to identify and track the warhead so that a
successful strike can be achieved. This paper addresses the problem of using noisy image sequence data captured
by on-board sensors in the nose cone of the interceptor to detect warheads among fragments. Detection and
tracking necessitates the extraction of reliable motion estimates, which is often difficult when the data sequence
is noisy.! We propose a simple algorithm that exploits both spatial and temporal correlation to suppress noise in
the observed image sequence. Our algorithm calculates reliable estimates of the global motion caused by camera
movement and uses these motion estimates to reduce significantly the noise in the video sequence.

Keywords: target tracking, noise suppression, affine motion estimation

1 INTRODUCTION

A variety of simple block and optical low based motion estimation algorithms are used for target tracking and
detection problems in scenarios involving imaging sensors in high speed missiles.? In general, optical flow methods
have an advantage in accurately representing the true motion at the expense of high computational complexity,
while simple block-based techniques are faster but do not handle dilation and rotational motion found in high
speed missile imagery. In either case, the tracking or detection problem is complicated by the low signal-to-noise
ratios that are characteristic of these types of image sequences. As a result, spatial processing in often applied as
a preprocessing step to suppress noise.?

We propose a better preprocessing step that combines temporal information with spatial processing to create
a spatio-temporal noise suppression algorithm. The key to this approach is using an affine motion model to
design the spatio-temporal filter. This affine motion model provides more flexibility than traditional translation
motion models while at the same time requiring less computation than typical pel-recursive motion estimation
techniques. In addition to being useful for noise suppression, the parameters of the affine model can also serve as
initial estimates in subsequent tracking algorithms.
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Figure 1: Block diagrams of ballistic missile tracking algorithm

A block diagram of the proposed noise suppression algorithm is shown in Figure 1. This preprocessing step
is envisioned to be an important component in the complete tracking algorithm. The observed image sequence
is captured by the interceptor as it closes in on the target. The most important task in this noise suppression
algorithm is accurate estimation and representation of the global motion created by the movement of the camera.
Three issues are of primary importance in designing the motion estimation procedure: flexibility in the motion
model, robustness to noise, and computational complexity. Each of these issues is addressed in the following
sections.

2 GENERALIZED MOTION MODEL

Since the missile approaches the debris field at a high rate of speed, the model used to represent the global
motion field must allow rotation and scale changes. With this requirement in mind, consider a generalized motion
model that allows arbitrarily complex motion. The relationship between two frames at time t and t + 6t is
described by:

X(ny,n2,t) = X (ny + 57 B(ns,na),ng + B @(ny,ng), ¢ + 6t), (1)
where X (ny,n2,t) represents the video signal luminance and §(n;,n,) = [61(n1,n2)...05(n1,n2))" and (ny,ny) =
[#1(n1,n2)...0¢(n1, n)]7 are basis functions used to represent the motion field. The goal of the motion estimation
algorithm is to find optimal values for the coefficients @ and 5. A detailed description of the parameter optimiza-
tion algorithm used for computing @ and B has been previously described so that only an overview is presented
below.3 The iterative algorithm is summarized by the following flowchart:

1. Initialization: Set iteration counter n = 0 and initialize parameter vectors @ and f,. Evaluate error
function with initial parameter vector and store the result.
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Figure 2: Model for observed signal

Taylor Series Expansion: Calculate derivatives at I(z + @2 0(z,y),v + -E:E(:z:, yWV(z,y) € S
Update: Minimize the approximated error function and update parameter vectors to Gnt; and B,

Evaluation: Evaluate the true error function. Store parameter error if error function decreases.

oos N

Termination test: Evaluate stopping criterion. Increment n and return to step 2 if convergence not yet
reached.

The approximated error function minimized in Step 3 of the algorithm is given by:

[ZZ] W(ny,na) (I(nl,ng,t) - I(ny,ng, t+dt) - _31(711_,712).57‘9-(711’712) - QMETE(TH,MO - (2)

ny,Nng an, aﬂ.z
Likewise, the basis functions are selected as follows to allow an affine transformation:

1
B(ny,n2) = ¢(ny,mg) = | ny |. (3)
na

An affine function was chosen in this case because it meets the requirements of allowing rotation and scale. If a
more complex global motion field is expected, the same parameter estimation algorithm can be used.

The first point worth noting is the estimation process relies on the image gradient. This fact increases
sensitivity to noise, which is clearly undesirable. We overcome this limitation by applying a spatial filter described
in Section 3 to all images before attempting to estimate global motion parameters. Additional robustness is also
provided by using the entire field of debris when estimating parameters rather than using a single target. Using
the entire debris field implies that many pixels at different location are integrated into the estimation process.
Another point worth noting about the estimate algorithm is that it assumes linear variation of the intensity
function. Again, this assumption becomes less accurate in noisy environments, but the spatial filter applied to
each image tends to enforce the linearity constraint.

3 ROBUSTNESS TO NOISE

The parameter estimation procedure presented in Section 2 degrades in the presence of noise. Fortunately, a
spatial filter can be used to reduce the noise while still preserving enough of the original signal energy to calculate
global motion parameters. The observed video sequence is modeled as shown Figure 2. Noise is added to the
signal after the original image sequence is blurred with the known point spread function H(w;,ws). The noise
component is assumed to consist of uncorrelated Gaussian noise with a known variance ¢?. A more accurate




Symbol | Operation
T, Gradient

Ty Sample image on non-integer lattice
T Arithmetic operation (add/multiply/compare)
T; Matrix inverse

Table 1: Abbreviations used to count floating point operations

noise model could also account for degradations in signal quality caused by clouds or other variables. The final
component of the observation model is a quantizer that accounts for the fact that the sensor has finite dynamic
range and fixed resolution.

Given these assumptions, an appropriate choice for the initial spatial filter is a Wiener filter. Since the
statistics of the original sequence are unknown, the filter used in our simulations is given by:

- H.(w])u’?)
| H (w; .w2)|2 + o2

G(wr,ws) (4)
This low-pass filter simultaneously accomplishes the goals of reducing noise and imposing linearity on the lumi-

nance function. Object boundaries will be blurred with this spatial filter, but the global motion parameters can
still be estimated.

4 COMPUTATIONAL COMPLEXITY

The number of floating point operations per second required to calculate the global motion parameters using
the generalized motion model is estimated in this section. Computation complexity is of critical importance in
the ballistic missile setting because a cost-effective solution that can handle real time video is essential. Since the
estimation procedure is iterative, the first obvious question concerns convergence, Although convergence cannot
be analytically proven with this approach, our experience in a variety of settings has led to the conclusion that
at most five updates are needed for each frame. Another important issue in iterative algorithms is finding an

"appropriate starting point. We address this problem by initializing all parameters to zero in the first frame. In
subsequent frames, the parameters obtained by processing the previous frame serve as initial estimates in the
current frame. This approach eliminates the need for any computation to be used in finding starting points in each
frame. Table 1 defines the abbreviations used below in computing the total number of operations. A conservative
estimate for the number of calculations required in each stage of the algorithm to process an N x M image is
given as follows:

1. Weight function calculation: Many pixels in the image do not provide any motion information. Furthermore,
since the motion estimation algorithm is based on the optical flow equation, only areas around edges prove
useful for estimating motion. Therefore, we generate the weight function by setting the weight to zero
for any pixel whose value is below Ty or any pixel whose gradient is below T5. Use of this weight function
drastically reduces the computation required in the complete algorithm. The complexity required to compute
this mask is given by NM(Ty + T,).

2. Error function evaluation: In order to evaluate the error function, the previous image must be resampled ct
the positions given in Equation (1). A fast scan-line algorithm could be used to speed up the computation
of image coordinates, but the approximation given here assumes the coordinates are computed directly for
each pixel in the image.® Therefore, the complexity introduced by evaluating the error function is given by
p(11T, + T,), where p represents the number of non-zero values in the weight matrix.




3. Parameter update: Updating the motion parameters for each iteration requires a 6 x 6 matrix inverse. In
addition, building the matrix that eventually gets inverted requires calculating a gradient and an outer
product of two vectors of length six. This requires a total of T; + p(T, + 48T,) operations.

The total computation for five iterations can now be written as:
NM(Ty+T,) + 5(T; + p(Tg + T, + 59T5)). (5)

This expression can be reduced further by specifying the complexity of each operation in terms of one basic unit.
A reasonable set of simplifications is to use bilinear interpolation for image resampling and a first-order difference
for gradient calculations. A non-optimized bilinear interpolation operation requiring 15 arithmetic operations
gives values of T, = 15T, and T, = 167,. Therefore a simplified expression for the floating point operations
required to estimate motion parameters at a rate of 30 frames per second is given by:

150T; + (510N M + 13500p)T,. (6)

Clearly the value of p should be as small as possible to reduce complexity. In our simulations ,the image size is
256 x 256 and less than 5% of the pixels are used to compute the motion parameters. Neglecting the time for
matrix inversion, this leads to a computational burden of approximately 78 MFLOPS to process 30 frames per
second.

5 SPATIO-TEMPORAL FILTERING

Once the global motion parameters have been calculated, this information can be used to reduce the noise in
the sequence by combining a motion compensated filter together with the spatial Wiener filter previously used.
Suppose that the motion parameters have been estimated and stored for the previous NN frames. If the motion
parameters for frame i are represented by (&;, 3;), then Equation (1) can be recursively applied to find a mapping
between the current frame and each of the previous N frames. For example, with N = 2 we can write:

X(ny,no k] = X[nl+a'kr-9'(n1,n2),n2+-ﬂ_f-q_5(n1,n2),k-—1} (7)

X[ny,ng,k) = X [ﬂl +8]_,8(ny +al8(n1,n2),my +Ek75(ﬂx,n2)), (8)

ng + .ﬂ-f_la(nl + Efe(nl,nz),ng + E{E(nl ,712)), k ~ 2} .

Assuming the global motion model is accurate, the mapping functions provide a way to obtain N additional
observations of each pixel. Simple averaging of all observations reduces the noise variance by a factor of N + 1.
Further reductions in noise are obtained by applying a spatial filter similar to Equation (4). The resulting spatio-
temporal filter can be viewed as a two-step process where the N previous frames are first warped to align objects
present in each of the frames. These warped frames are then averaged and spatially filtered.

6 RESULTS

The spatio-temporal noise suppression scheme was tested on a simulated video sequence. The simulated
sequence was generated using the Georgia Tech Signature (GTSIG) model together with simulated target trajec-
tories. GTSIG calculates the thermal signatures of a target by solving a system of differential equations. A series
of sequences was generated to test different lighting conditions and interceptor velocities. Figure 3a-b shows two
original frames from a typical sequence. The field of debris is composed of 64 fragments where each fragment is
the projection of a 3-D object experiencing 3-D motion onto the 2-D image plane. The degraded images observed




at the sensor are show in Figure 3c-d. These images are produced by the model in Figure 2 where H(w;,w,) is a
Gaussian blur filter and the noise is uncorrelated Gaussian noise. The resulting SNR for the observed sequence
is 4.3 dB for frame 240.

Two approaches to noise suppression are shown in Figure 4. The top images show the result of applying the
Wiener filter given in Equation (4) to each of the observed images. Likewise, the bottom images show the result
produced by the spatio-temporal noise suppression algorithm where three frames are used in the filter. In terms
of SNR, both filters increase the SNR by 3 dB. The ultimate goal, however, is detection and tracking of these
objects. This goal requires the objects to be easily distinguished from the background with minimal degradation
in shape. Subjectively, the objects are easier to distinguish from the background and and outlines are more
accurate in the frames processed with the spatio-temporal filter. This difference is objectively demonstrated in
Figure 5 by thresholding each of the filtered images to generate a binary object mask. The threshold was selected
for each image to be as low as possible without introducing any spurious objects into the background. The lower

images in Figure 5 clearly show that more objects are successfully identified. In addition, objects boundaries of
large objects are more accurate.

7 CONCLUSIONS

We have presented a spatio-temporal noise suppression algorithm intended for use as a preprocessing step
in ballistic missile tracking and detection systems. As part of the noise reduction algorithm we calculate global
motion estimates that can serve as initial estimates of target trajectories in subsequent processing stages. While
the computation required to implement the algorithm can be reduced further by using a multi-resolution scheme,
the current implementation yields good results with a computation burden of approximately 80 MFLOPS. Future
research will apply the generalized motion estimation algorithm used in this work to the task of computing local
motion information around targets of interest.
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Figure 3: Selected frames from the simulated data sequence used for testing. The top row shows the original
signal while the bottom row shows the observed signal that has been corrupted by a blurring distortion and noise.
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Figure 4: Comparison of filtered frames. The left column comparés results at frame 200 while the right colurﬁn
compares results at frame 240.
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Figure 5: Comparison of threshold applied to filtered frames. The left column compares results at frame 200
while the right column compares results at frame 240.
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Introduction

The objective of this project is the development of an effective algorithm for
tracking a missile warhead when missile fragments are in the scene. The general
approach taken is to study the problem within the framework of the Continuous
Multidimensional Wavelet Transform (CWT) and to employ principles from
multirate signal processing to achieve efficient implementations.

A substantial effort toward CWT tracking is in progress. This part of the
project is described in Appendices A and B. Supporting the CWT tracking
task is a motion estimation and modeling component, which we discuss next.
Motion modeling may be used within the CWT or within any multiresolution
framework. This is envisioned to be a critical part of the end product.

Motion estimation refers to the task of calculating the movement of objects
through a series of images. This task is important in a variety of applications
such as video coding, computer vision, and tracking. In general, two main
approaches are used for the task of motion estimation. Block-based approaches
assume a translational motion holds for every pixel in a given region. This
assumption leads to straightforward computation of motion parameters with
a search technique, but the limitation on translational motion requires small
block sizes and is usually only accurate for short periods of time. In the second
approach, pel-recursive techniques allow a unique motion vector for each pixel in
an image. In order to make this approach tractable, neighborhood constraints
are imposed on the motion field. These constraints require the motion field
to be spatially smooth. Pel-recursive techniques can represent the true motion
field much more accurately and any type of motion is possible. Unfortunately,
this flexibility comes at the cost of high computation and reduced robustness to
noise. We use a combination of these two approaches based on an explicit model
of the motion field. Similar to block-based approaches, we assume the movement
of pixels within a patch is governed by the same model. At the same time, the
model gives a unique motion vector for every pixel in the patch like pel-recursive
based techniques. By increasing the model order, more complicated motion can
be represented. The advantages of this approach include better representation
of true motion fields relative to block-based approaches, fewer computations
than pel-recursive techniques, and a compact representation of the motion field
with model coefficients.

General Algorithm

The following derivation uses arbitrary basis functions to show how a motion
model of arbitrary complexity can be used. The model relating the current
image at time index ¢ to the previous image is given by




X (nlyn27t) (nl +Za1 i nla"-? n2 +Zﬂ1¢;(n1,n2) t- 1) (1)

=1

where X (ny,ns,t) represents the video signal luminance and 6;(n;,ns) and
¢:(n1,ny) are basis functions used to represent the motion field. The goal of
the motion estimation algorithm is to find optimal values for the coefficients a;
and B;. In order to solve equation (1) we make two simplifications. First, the
model coefficients are assumed to remain constant in an arbitrary 2D region
denoted S. Second, the expression on the right-hand side of equation (1) is
approximated by a first-order Taylor series expansion as follows:

<ﬂ1+209 ﬂ.l,ng 77.2+Zﬁl¢ (ﬂl,ng))

i=1 =1

n]

' 3X (n, 48X (my,m2)
X(ny,n2) + anl na) Zax (n1,n2)+ m ) Zﬂdﬁ, (n,n2). (2)
i=1

i=1

Combining these simplifications with the motion model leads to the following
error function:

X(
W(ny,ny) <X(n1,ng,t)—X(n1,n2,t—1) 9 nx,ﬂg Za@ ny,na)

i=1

[n;,ng]ES
2
8X (ny,na)
___;T:_Q”E_ ;ﬂfcﬁi(m,nz)) . (3)

where W(n,,ns) is a weighting function. The minimum of the error function is
found by forcing the derivative with respect to each o; and §; to zero. As long
as a solution exists the minimum is found a (p + ¢) X (p + ¢) matrix inverse.
The accuracy of the estimate is increased by changing the location used by the
Taylor series approximation in equation (2) from (n,,n;) to

n1+Za. (n1,n2) ﬂ2+25: (n1,m2)).

=1

The motion parameters a; and f; are iteratively updated by forcing the deriva-
tive of the error function in expression 3 to zero and changing the location of
the Taylor series expansion. This process can be repeated until either an error
criterion or the maximum number of iterations is met. For the case of an affine
model, optimal results are almost always reached in 5 or fewer iterations. An
important consideration in this algorithm is the choice of initial starting points.
In general the assumption of linear variation in intensity is only valid in a small




neighborhood around each pixel. Consequently, the update term used in each
iteration of the algorithm must be fairly small. This fact implies that the start-
ing point must be reasonable good. In typical video sequences this restriction
does not present a serious problem because the temporal sampling rate is high
enough to allow using a trivial starting point where all parameters are zero. In
a tracking setting a better choice is to assume the motion parameters change
slowly over time so that previous model parameters may be used for the initial
estimate at the current time. This prediction based approach was used in the
initial simulations.

Simulations

The general algorithm was used to track objects in test sequences composed of
either 3 or 64 objects. The tracking algorithm consists of three parts.

1. Registration: Small changes in position of the camera result in relatively
large translation displacements of target locations. Registration approx-
imately compensates for these translation displacements. This step is
important for future processing because it provides a fixed origin for the
motion models.

Registration is achieved with a simple algorithm that finds the centroid of
all objects in the image. Once the centroid is located the entire image is
shifted so that the centroid moves to the center of the image.

2. Global Motion Estimation: Part of the apparent motion in the sequence
is caused by the decreasing distance between the camera and the targets.
We chose to use an affine model for this component of target motion. For
this case p = ¢ = 3 and the basis functions are given by:

6i(n1,n2) = ¢1(ny,ng) =1
02(ny,n2) = d2(n1,n2) = my
63(ny,n2) = ¢a(n1,n2) = na.

This component of the motion applies to all the targets equally, and the
entire image is used to estimate the parameters. Also, since the images
are registered in step 1, we can use the previously estimated global mo-
tion parameters as an initial estimate of the motion parameters relating
the current frame to the previous frame. Good initial estimates reduce
computation and produce more accurate motion estimates.

3. Local Motion Estimation: Finally, a small correction in motion parameters
is made for any targets of interest. As in step 2 an affine model is used
to approximate the motion. Target selection is done by drawing a box
around the desired object early in the sequence. Local motion parameters




are assumed to be valid within the box and the boundaries of the box are
updated in each frame with the global motion parameters.

Future Work

The simulation results show the algorithm can reliably track the objects in the

distortion free simulated sequence. Further study is needed to determine if the

algorithm is appropriate in realistic scenarios where images are degraded by

noise and blurring. Since the algorithm depends on reliable image gradients

near edges, noise will be the most difficult problem. To address this problem, a

robust gradient estimation algorithm must be used. '

In addition to performance with noisy inputs, an important consideration

in real time operation is the computational complexity. Simplifications to the

algorithm that reduce complexity will be explored and the total computational

cost in terms of floating point operations per second will be evaluated.
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Linear-Prediction-Based Motion Estimation

As part of the Ph.D. thesis of Robbie Armitano, a computationally efficient
block-matching motion estimation algorithm was developed using linear predici-
ton. The idea is that it narrows the search region using a linear prediction of
the motion vectors. It has been found that a reliable estimate of motion cannot
only reduce the computational complexity of motion estimation, but can also
be used to (1) decrease the amount of side information required to transmit mo-
tion vectors, (2) recover Jost motion vectors, and (3) improve the performance
of motion estimation in noisy environments. We examined the use of linear
prediction in the context of motion analysis for target tracking. In particular,
we were interesting in how well the noise resiliant properties of the technique
working in the tracking problem.

Linear prediction of motion vectors is possible because of the high correlation
between motion vectors of neighboring blocks. Because of the high motion-
vector correlation, one can use a linear combination of previously computed
motion vectors to obtain an initial guess (a seed) for the estimation of the
current motion vector, ¥u(t), as seen in Eq. (4). The biasing of the search
origin reduces the ambiguity in the motion-estimation function, minimizing the
search area. The estimate is based on motion vectors in a neighborhood around
the current motion vector that were previously computed in past, current, or
future frames. Motion vectors that are highly correlated are used as a 3-D region
of support, ¥. The equation for the predicted motion vector, Vu(t), in frame ¢
with a pth order prediction filter is given as

P
Vb(t) = Zakvb» (tk), (4)
k=1

where b is the current block, ¢ is the current frame number, {by,tx} € ¥, and
the ay are the predictor coefficients.

The use of linear prediction to estimate a seed (an initial starting point) for
the motion-vector search is advantageous because it reduces the search time by
reducing the number of redundant searches. It imposes continuity from block to
block and frame to frame. This forces the motion vector field to better represents
the underlying optical flow and provides resiliance in noisy environments.

The linear prediction algorithm performs well in noisy-free environments as
expected. This is illustrated by the example shown in Figure 2. It shows a single
frame taken from our three-object test sequence. The motion vectors obtained
are correct.

It can handle noise well at a level of 10-20 percent, but breaks down beyond
this range. Figure 2 shows the resulting motion vectors for our tracking test
sequence under realistic noise conditions. As can be seen, the algorithm derails.

13
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Figure 2: Motion vectors obtained for noisy case.
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